Painting the universe red

Publication date
Thursday, 11 May 2023
Body

Raghda Abdel Khaleq spends a lot of time contemplating the unknown sector of our universe. And not just for her PhD research in nuclear physics.

“This painting is part of a dark energy-inspired series,” she says, as she makes another deliberate stroke of the paintbrush on her canvas. “I’m exploring the repulsive energy that is responsible for the universe expanding at an accelerated rate.

“I love the creative liberty of choosing how to represent a scientific idea.”

Before arriving at The Australian National University Research School of Physics, Raghda explored the connections between art and science through undergraduate degrees in fine arts and advanced science.

Now she is part of the ARC Centre of Excellence for Dark Matter Particle Physics, where she is helping to unlock one of the greatest mysteries of our universe, by theorising how dark matter particles could interact with the nucleus of an atom.

Dark matter and dark energy represent the part of the Universe that we can’t see – which, combined, is 95 per cent of it.

Dark energy drives the accelerated expansion of our universe, Raghda explains.

“If we look at a faraway galaxy or faraway supernova, we can see that over time, the spectrum of light is red shifted. This indicates that the universe is expanding at an accelerated rate.”

Raghda uses a range of red tones and gradients to explore this mystery through art.

“For me, red represents this red shifting phenomenon, with the darker reds representing greater expansion.”

Dark matter is like dark energy, in that scientists can measure its impact on the universe, but we haven’t been able to detect or observe it directly. However, we do know that dark matter has mass and impacts the way galaxies are formed.

Australia is playing a leading role in the global hunt for dark matter, with the Stawell Underground Physics Laboratory, located in a gold mine one kilometre underground.

“We want to try and detect a dark matter particle interacting with a nucleus and giving off a signal.

“I am looking at this from the lens of a nuclear physicist, investigating the nucleus that the dark matter particle is going to scatter off.”

Raghda hopes that both her research and her art practice can help elucidate scientific concepts that are difficult to understand.

“I don’t think it is possible to fully explain something scientific through just one piece of artwork. But I do think that art and creative media can help people get a little bit of intuition into some difficult concepts.”

Raghda hopes to use her PhD for future creative inspiration.

Video and images by Nic Vevers (ANU).

Read more

Doctor of Philosophy
Degree program

During the PhD program you will work with increased independence, under the direction of a supervisory panel of experts in the field. Your research will make an original and important contribution to human knowledge, research and development.

Learn more
Physicist in lab
Article

New nanotechnology developed by ANU physicists will help scientists better understand and fight certain diseases by zooming in on cells and viruses at 10 times the resolution of today’s microscopes.

Learn more
Video thumbnail with text reading: Road to space: The Bogong Thruster
Article

Go behind the mission to get a new mothball-fueled satellite thruster to space.

Learn more