Error Correction in Real Life

International Standard Book Numbers (ISBN)

Published books have a 13-digit code that is unique to that book. It is usually found on the back cover, or on one of the first pages of the book. It means that if you order a book by the ISBN, you know you're getting the correct one.

ISBNs have an error detection code. Let's see how it works using this book about Hedy Lamarr. She was a super cool lady who helped invent wi-fi. She was also an actress.

Step 1: Find the ISBN

The ISBN for this book is 978-1-4549-2691-7
The final number, 7 , is the check code.
Step 2: Add all but the last number using a special formula
You multiply every second number by 3 before adding.

$$
\begin{aligned}
&(9 \times 1)+(7 \times 3)+(8 \times 1)+(1 \times 3)+(4 \times 1)+(5 \times 3) \\
&+(4 \times 1)+(9 \times 3)+(2 \times 1)+(6 \times 3)+(9 \times 1)+(1 \times 3) \\
&= 9+21+8+3+4+15+4+27+2+18+9+3 \\
&= 123
\end{aligned}
$$

Step 3: Divide by 10, and find the remainder
$123 \div 10=12$ remainder 3
Step 4: Subtract the remainder from 10 to find the checksum
$10-3=7$
As expected!

Try it for some of your own books. If you have some old books, you might see ISBNs that only have 10 digits. These were calculated differently to modern ISBNs. Can you find the old way of calculating them?

What would happen if a digit were entered incorrectly?
What would happen if two digits that were next to each other were swapped?
What if a digit were accidentally inserted or removed?
Can you think of an error that might not be detected?

AN ASD-ANU COLLABORATION

Binary Telephone

Maybe you've played telephone before- where you whisper a message from friend to friend and see how different the message is by the end of the line. Sometimes, when we send a message using a computer the message changes along the way, too!

The American Standard Code for Information Interchange, or ASCII, is one way the computer changes our letters, numbers and other characters into binary that is ready to store or send to our friends. Sometimes, one of those 1 s or Os gets accidently changed, which means our friend might receive the wrong message! Let's see whether our error correcting code can help us correctly pass messages in binary.

Set Up

1. Write a seven character message in the first column of the grid.
2. Turn each character into binary using the ASCII table and write it in the rows.
3. Calculate the check code for each row and write it at the end of that row. Do the same for the columns.
4. Copy the binary table into the table on the laminated sheet.

Play
5. Pass your laminated message sheet to the person on your right.
6. Change exactly one of the 1 s or 0 s on the sheet you have received.
7. Pass the sheet to your right.
8. Try to decode and error correct the code you have received.

Extension

Try passing the sheet through two people who each make a change. Can you still decode the message? What about three people? More? Do the places where the errors occur make a difference to whether you can decode the message?

American Standard Code for Information Interchange (ASCII)

0100001	!	1010000	P
0100010	"	1010001	Q
0100011	\#	1010010	R
0100100	\$	1010011	S
0100101	\%	1010100	T
0100110	\&	1010101	U
0100111	,	1010110	V
0101000	$($	1010111	W
0101001)	1011000	X
0101010	*	1011001	Y
0101011	+	1011010	Z
0101100	,	1011011	[
0101101	-	1011100	1
0101110	.	1011101]
0101111	1	1011110	\wedge
0110000	0	1011111	
0110001	1	1100000	
0110010	2	1100001	a
0110011	3	1100010	b
0110100	4	1100011	c
0110101	5	1100100	d
0110110	6	1100101	e
0110111	7	1100110	f
0111000	8	1100111	g
0111001	9	1101000	h
0111010	:	1101001	i
0111011	;	1101010	j
0111100	<	1101011	k
0111101	=	1101100	I
0111110	>	1101101	m
0111111	?	1101110	n
1000000	@	1101111	0
1000001	A	1110000	p
1000010	B	1110001	q
1000011	C	1110010	r
1000100	D	1110011	s
1000101	E	1110100	t
1000110	F	1110101	u
1000111	G	1110110	v
1001000	H	1110111	w
1001001	1	1111000	x
1001010	J	1111001	y
1001011	K	1111010	z
1001100	L	1111011	\{
1001101	M	1111100	\|
1001110	N	1111101	\}
1001111	O	1111110	~

Binary Telephone

